Recrystallization from MeOH afforded 3 as yellow needles; mp Recrystallization from MeOH altorded 3 as yellow needles; mp 183.5 °C: ¹H NMR δ 8.67 (dd, H₁₂, J_{11,12} = 9.3 Hz, J_{10F,12} = 5.4 Hz), 8.37 (d, H₁, J_{1,2} = 7.1 Hz), 8.04 (d, H₈, J_{7,8} = 8.4 Hz), 7.98 (d, H₆, J_{5,6} = 6.8 Hz), 7.88 (d, H₄, J_{4,5} = 8.3 Hz), 7.86 (d, H₃, J_{2,3} = 8.2 Hz), 7.77 (d, H₇), 7.74–7.60 (m, H_{2,5}), 7.53 (dd, H₉, J_{9,10F} = 9.9 Hz, J_{9,11} = 2.6 Hz), 7.38 (m, H₁₁); ¹³C NMR δ 160.77 (d, J = 245.4 Hz), 137.94, 137.59, 137.54, 137.47, 135.52, 135.34, 132.35 245.4 Hz), 138.64 (d, H₂, 0.2 Hz), 0.2 To 1.05 (d, Hz), 130.16, 128.64, 128.46, 128.03, 127.90, 127.74, 127.04 (d, J = 8.7Hz), 124.59, 121.42, 121.37, 117.65 (d, J = 25.0 Hz), 112.75 (d, J= 20.2 Hz); high resolution mass spectrum, exact mass calcd for

C₂₀H₁₁F 270.084530, obsd 270.084475.

Acknowledgment. This work was supported by National Institute of Environmental Health Sciences Grant No. ES-02030. J.E.R. acknowledges partial support through a Henry Rutgers Research Fellowship. We would like to thank Dr. Robert T. Rosen at the Center for Advanced Food Technology, Cook College, for performing the high resolution mass spectral analyses.

Improved Correlation of ³³S Chemical Shifts with pK_a 's of Arenesulfonic Acids: Use of ³³S NMR for pK_a Determination

David C. French and David S. Crumrine*

Department of Chemistry, Loyola University of Chicago, Chicago, Illinois 60626

Received January 26, 1990

Reported here is an improved linear correlation between ³³S chemical shifts and the pK_a 's of arenesulfonic acids 1, 2, and 8-10, previously determined by UV spectroscopy. Using that linear correlation, we determined the following previously unreported pK_a 's (±0.04) from ³³S chemical shifts: *p*-aminobenzenesulfonic (-6.47), p-(dimethylamino)benzenesulfonic (-6.43), p-(dimethylammonio)benzenesulfonic (-7.18), p-chlorobenzenesulfonic (-6.88), p-acetylbenzenesulfonic (-6.96), p-nitrobenzenesulfonic (-7.23), m-(trifluoromethyl)benzenesulfonic (-7.04), and m-nitrobenzenesulfonic (-7.25) acids. Also, ³³S NMR provides an improved value for the second pK_{a} of m-benzenedisulfonic acid (-7.00); the second p K_a of p-benzenedisulfonic acid (-6.99) is, within experimental error, identical with that of the meta compound.

Introduction

Previous studies of substituent effects on the acidities of arenesulfonic acids, including 1, 2, and 8-10, and the first pK_a 's of 3 and 13, have been conducted by measuring their degrees of ionization in solutions of varying Hammett acidity (H_0) with UV or ¹H NMR methods.¹ It has been necessary to carry out these pK_a determinations in concentrated sulfuric acid solution, where significant amounts of the free sulfonic acid and its conjugate base are both present. Experimental difficulties limited these methods to sulfonic acids showing an isolated B band in the UV and to the determination of first ionizations of disulfonic acids only. Therefore, the pK_a 's of 4, 5, 15, and 3,5-bis(trifluoromethyl)benzenesulfonic acid have previously been calculated from a Hammett plot of pK_a vs σ , with use of the experimentally determined pK_a 's of 1, 2, 8, 10, and the first ionization of 3.2

The field of ³³S NMR has grown rapidly, and a good review of the subject has appeared.³ Hinton found a linear relationship between the ³³S chemical shifts of arenesulfonic acids 1, 8, 11, and 15 and Hammett σ constants.⁴ Crumrine et al. reported a linear correlation between the ³³S NMR chemical shifts of sulfonic acids 1, 2, 4, 5, 8, 10, 15, and their pK_a 's.⁵ The ³³S NMR spectra in both of these studies were recorded on low-field spectrometers, with aqueous solutions of rather high concentration.

With higher applied magnetic field strength, the receptivity of the nucleus and spectral resolution are both enhanced. Recently, we reported that, in a given solvent, line widths were narrowest at low concentration where ion-ion contributions to nuclear relaxation were minimized.⁶ It is well-known that narrower spectral lines are obtained at higher temperatures than at lower ones.⁷ By these principles, more accurate ³³S chemical shifts were obtained in this investigation. Also, it was possible to record the ³³S spectra of several compounds with limited solubility. Subsequently, we found ³³S NMR to be an accurate and facile experimental method for determining the p K_a 's of arenesulfonic acids, which circumvented the experimental difficulties of earlier methods.

The ³³S NMR spectra of arenesulfonates $(ZC_{6}H_{4}SO_{3})^{-1}$ Cat⁺) 1-15 were recorded in 0.046-0.13 M aqueous solutions, where the sulfonates are almost completely ionized.⁸ Consequently, the ³³S chemical shifts were not affected by the counterion.9

	z - so ₃ ca	at ⁺
1, Z = H	6, $Z = p - N(CH_3)_2$	11, Z = <i>p</i> -Cl
2 , Z = <i>m</i> -CH ₃	7 , $Z = p - NH_2$	12 , $Z = p$ -COCH ₃
3, Z = m-SO3	8 , Z = <i>p</i> -CH ₃	13, Z = p-SO ₃ ⁻
4 , $Z = m - CF_3$	9 , Z = p -NH ₃ ⁺	14, Z = p -NH(CH ₃) ₂ *
5, Z = <i>m</i> -NO ₂	10, Z = <i>p</i> -Br	15, Z = <i>p</i> -NO ₂

Results and Discussion

Table I shows the ³³S chemical shifts and line widths of the arenesulfonates $(ZC_6H_4SO_3^-Cat^+)$ at 20 and 39 °C. Errors in the chemical shift values are ca. ± 0.3 ppm for

 ^{(1) (}a) Cerfontain, H.; Schnitger, B. S. Recl. Trav. Chim. Pays-Bas
 1972, 91, 199. (b) Maarsen, P. K.; Bregman, R.; Cerfontain, H. Tetrahedron 1974, 30, 1211. (c) Koeberg-Telder, A.; Cerfontain, H. J. Chem. Soc., Perkin Trans. 2 1975, 226.
 (2) Hoffman, R. V.; Belfoure, E. L. J. Am. Chem. Soc. 1982, 104, 2183.
 (3) Hinton, J. F. Annual Reports On NMR Spectroscopy; Webb, G. A., Ed.; Academic Press: New York, London, 1987; Vol. 19, Chapter 1.
 (4) Hinton, J. F. Buster, D. J. Magn. Reson. 1984, 57, 494

 ⁽⁴⁾ Hinton, J. F.; Buster, D. J. Magn. Reson. 1984, 57, 494.
 (5) Crumrine, D. S.; Shankweiler, J. M.; Hoffman, R. V. J. Org. Chem.

^{1986, 51, 5013.}

 ⁽⁶⁾ French, D. C.; Crumrine, D. S. J. Magn. Reson. 1989, 84, 548.
 (7) Farrar, T. C.; Trost, B. M.; Tang, S. L.; Springer-Wilson, S. E. J. Am. Chem. Soc. 1985, 107, 262.

⁽⁸⁾ Crumrine, D. S.; Gillece-Castro, B. J. Org. Chem. 1985, 50, 4408. (9) Cassidei, L.; Sciacovelli, O. J. Magn. Reson. 1985, 62, 529.

^{*} To whom correspondence should be addressed.

Table I. ³³S Chemical Shifts and Line Widths of Arenesulfonic Acids and Arenesulfonate Salts (ZC₆H₄SO₃⁻Cat⁺) in Aqueous Solution at 20 and 39 °C

		temp,	Нq		$\Delta \nu_{1/2}$	
Z	Cat ⁺	°C	(20 °C)	δ	Hz	
н	H+	20	2	-11.3	8.8	
m-CH ₃	Н+	20	2	-10.9	18.8	
$m-SO_3^-$	2 Na+	20	4	-13.9	21.5	
m-CF ₃	H+	20	2	-14.2	19.5	
$m - NO_2$	H+	20	2	-15.9	49.0	
$p \cdot N(CH_3)_2$	Na+	20	8	-9.6	75.6	
$p-NH_2$	K+	20	11	-9.8	51.5	
$p-CH_3$	H+ -	20	2	-10.6	21.2	
$p-NH_3^+$	K+	20	1	-14.2	18.1	
p-Br	H+	20	2	-12.8	9.0	
p-Cl	H+	20	2	-13.0	9.0	
p-COCH ₃	Na+	20	4	-13.6	13.8	
$p-SO_3^-$	2 K+	20	8	-13.8	18.8	
$p-NH(CH_3)_2^+$	Na ⁺	20	2	-15.3	55.0	
$p-NO_2$	Na+	20	5	-15.7	58.8	
Н	H+	39	2	-11.7	6.5	
m -CH $_3$	H+	39	2	-11.2	8.8	
$m-SO_3^-$	2 Na+	39	4	-14.2	16.0	
m-CF ₃	H+	39	2	-14.4	18.2	
$m - NO_2$	Na+	39	2	-16.2	42.5	
$p-N(CH_3)_2$	Na+	39	8	-9.6	45.0	
p -NH $_2$	K+	39	11	-10.0	23.8	
p -CH $_3$	H+	39	2	-11.1	11.5	
$p-NH_3^+$	K+	39	1	-14.4	15.6	
p-Br	H+	3 9	2	-13.2	7.5	
p-Cl	H+	39	2	-13.3	6.2	
p -COCH $_3$	Na ⁺	39	4	-13.9	12.5	
$p-SO_3^-$	2 K+	3 9	8	-14.1	14.2	
$p \cdot \mathrm{NH}(\mathrm{CH}_3)_2^+$	Na ⁺	3 9	2	-15.2	34.5	
p-NO ₂	Na+	3 9	5	-15.7	47.5	

narrow lines and ± 0.5 ppm for broad lines. The temperature effect on the ³³S chemical shifts of these compounds is negligible. The ³³S chemical shifts for *m*-nitrobenzenesulfonic acid (5) and sodium *p*-nitrobenzenesulfonate (15) are substantially different from those previously recorded at 6.104 MHz (1.879 T) and 39 °C in ca. 2 M aqueous solution.⁵ Since the respective line widths for acids 5 and 15 were 91 and 125 Hz, there was considerable error in the earlier chemical shift measurements.

A substantial change in the ³³S chemical shift was observed for both potassium *p*-aminobenzenesulfonate (7) and sodium *p*-(dimethylamino)benzenesulfonate (6) upon HCl titration to the pH values in Table I, thereby furnishing ³³S chemical shifts for the corresponding zwitterions (9 and 14).¹⁰ The ³³S chemical shifts of these compounds fit the previously observed trend that ³³S resonances of benzenesulfonates with electron-withdrawing substituents are found upfield from those of benzenesulfonates with electron-donating substituents.⁸

Previously Crumrine et al. reported a linear relationship between the ³³S chemical shifts of compounds 1, 2, 4, 5, 8, 10, and 15 and respective Taft substituent constants.⁵ The data reported here yielded improved Taft dual-substituent plots of $\delta(^{33}S)$ vs σ_I and σ_R following the relationships in eqs 1-4; the substituent constants used and

$\delta(^{33}S) = -6.38\sigma_I - 6.69\sigma_R - 11.69$ meta at 20 °	C	(1)
--	---	-----

$\delta(^{33}\mathrm{S}) = -6.57\sigma_1$	$-5.32\sigma_{\rm R} - 11.4$	2 para at 20 °C (2)
---	------------------------------	-----------------------

 $\delta(^{33}S) = -6.31\sigma_I - 6.40\sigma_R - 11.99$ meta at 39 °C (3)

 $\delta(^{33}S) = -6.10\sigma_I - 5.47\sigma_R - 11.81$ para at 39 °C (4)

calculated ³³S chemical shifts appear in Table II.¹¹ The

Table II. Taft Substituent Constants Used and Calculated ³³S Chemical Shifts of Arenesulfonates (ZC₆H₄SO₃⁻) in Aqueous Solution at 20 and 39 °C

			$\delta(^{33}S)$ calcd		
Z	σ_{I}	σ_{R}	20 °C	39 °C	
Н	0.00	0.00	-11.7	-12.0	
m-CH ₃	-0.01	-0.13	-10.8	-11.1	
$m - SO_3^{-}$	0.23	0.07	-13.6	-13.9	
m-CF ₃	0.40	0.00	-14.2	-14.5	
$m - NO_2$	0.67	0.00	-16.0	-16.2	
Н	0.00	0.00	-11.4	-11.8	
$p-N(CH_3)_2$	0.17	-0.53	-9.7	-10.0	
p-NH ₂	0.17	-0.51	-9.8	-10.1	
$p-CH_3$	-0.01	-0.13	-10.7	-11.0	
$p-NH_3^+$	0.60	-0.18	-14.4	-14.5	
p-Br	0.47	-0.33	-12.8	-12.9	
p-Cl	0.47	-0.35	-12.6	-12.8	
p-COCH ₃	0.30	0.09	-13.9	-14.1	
$p-SO_3^-$	0.23	0.07	-13.3	-13.6	
p-NH(CH ₃) ₂ +	0.70	-0.14	-15.3	-15.3	
p-NO ₂	0.67	0.00	-15.8	-15.9	

Table III. pK_a 's of Arenesulfonic Acids ($ZC_6H_4SO_3H$) Determined by Three Methods

	UV	Hammett plot ^b		³³ S NMR chemical shift ^c		³³ S NMR lammett chemical plot ^b shift ^c	
Z	spectroscopy ^a	σ	pK_a	20 °C	39 °C		
Н	-6.65 ± 0.05	0.0	-6.66	-6.66	-6.66		
m-CH ₃	-6.56 ± 0.05	-0.06	-6.62	-6.61	-6.60		
$m - SO_3^{-}$	<-5.1; >-7	0.05	-6.69	-7.00	-7.01		
m-CF ₃		0.46	-6.96	-7.04	-7.04		
$m - NO_2$		0.71	-7.12	-7.25	-7.28		
$p-N(CH_3)_2$		-0.32	-6.45	-6.43	-6.37		
$p-NH_2$		-0.30	-6.47	-6.47	-6.42		
$p-CH_3$	-6.62 ± 0.05	-0.14	-6.57	-6.57	-6.57		
$p-NH_3^+$	-7.04 ± 0.05	0.60	-7.05	-7.03	-7.03		
p-Br	-6.86 ± 0.05	0.26	-6.83	-6.86	-6.87		
p-Cl		0.24	-6.82	-6.88	-6.88		
p-COCH ₃		0.47	-6.96	-6.96	-6.97		
$p-SO_3^-$		0.09	-6.72	-6.99	6.99		
$p-NH(CH_3)_2^+$				-7.18	-7.14		
$p-NO_2$		0.81	-7.18	-7.23	-7.21		

^a Values taken from ref 1. ^b All pK_a values are ± 0.05 . ^c All pK_a values are ± 0.04 .

correlation coefficients for experiments carried out at both temperatures are good (r = 0.993 for meta and r = 0.994for para at 20 °C; r = 0.994 for meta and r = 0.990 for para at 39 °C), and all calculated ³³S chemical shifts are within experimental error of the measured values (Table I). When experimental versus calculated chemical shifts are plotted, all slopes obtained are within experimental error of the theoretical value of 1.00.

The pK_a 's of arenesulfonic acids 1, 2, and 8-10 previously determined by UV techniques¹ (Table III) were employed to calculate pK_a 's of arenesulfonic acids 1-15. Linear regression analysis of pK_a vs δ ⁽³³S) yielded the relationships in eqs 5 and 6, and results appear in Table III.

$\mathrm{p}K_{\mathrm{a}}$	$= 0.130\delta(^{33}\text{S}) - 5.19$	r = 0.982	20 °C	(5)

 $pK_a = 0.139\delta(^{33}S) - 5.03$ r = 0.988 39 °C (6)

The pK_a for the second ionization of *m*-benzenedisulfonic acid (3) was previously estimated to lie between

⁽¹⁰⁾ March, J. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; p 221.

^{(11) (}a) σ values for 1, 2, 4, 5-8, 10-12, and 15 taken from: Exner, O. Correlation Analysis of Chemical Data; Plenum Press: New York, 1988; p 143. (b) σ values for 3, 9, 13, and 14 taken from: Exner, O. Correlation Analysis In Chemistry – Recent Advances; Chapman, N. B., Shorter, J., Eds.; Plenum Press: New York, 1978; p 439.

Figure 1. pK_{a} 's of arenesulfonic acids determined by three methods vs ³³S chemical shifts of arenesulfonates in aqueous

solution recorded at 20 °C: □, UV spectroscopy; ◊, Hammett plot; O, ³³S chemical shifts.

-5.1 and -7 by UV.^{1a} When the pK_a 's of *m*-benzenedisulfonic acid (3) and p-benzenedisulfonic acid (13) were previously determined by ¹H NMR, only pK_a 's for the first ionization could be obtained because the solvent was sulfuric acid.^{1c} The ³³S NMR method produced $pK_a - 7.00$ \pm 0.04 (Table III). Thus, ³³S NMR provides a method of determining the second ionizations of 3 and 13. Noteworthy also, ³³S NMR furnishes pK_{a} 's for *m*-nitrobenzenesulfonic acid (5) and *p*-nitrobenzenesulfonic acid (15), which cannot be determined by UV techniques due to unresolved B bands and which were not determined by ¹H NMR in sulfuric acid.¹

A Hammett plot of pK_a vs σ with UV-determined pK_a 's of arenesulfonic acids 1, 2, and 8-10 gave $\rho = -0.646$ (r = 0.976).¹² Linear regression analysis produced the calculated pK_a 's shown in Table III for comparison with experimental values. The pK_a for 14 could not be calculated from the Hammett plot because σ for this compound was unavailable. Good agreement is demonstrated between the pK_a 's determined by all three methods. The pK_a 's determined by ³³S NMR are plotted in Figure 1, as well as those determined by UV and calculated values from the Hammett plot shown for comparison. Therefore, we concluded that ³³S NMR is an accurate and facile method for determining pK_a 's of arenesulfonic acids, which is free of the experimental difficulties of previous methods.

Experimental Section

Sulfonic acids 1, 2, 8, and 11 and sodium sulfonates 3, 12, and 6 were obtained from commercial sources and were used without further purification. Sulfonic acids 4, 5, and 10 were prepared previously and completely identified.⁵ Dipotassium p-benzenedisulfonate (13) was prepared and identified by literature methods.¹³ Sodium p-nitrobenzenesulfonate (15) was prepared by dissolving p-nitrobenzenesulfonic acid⁵ in deionized water and adding 1 equiv of NaOH.

Potassium p-aminobenzenesulfonate (7) was prepared by stirring a suspension of p-aminobenzenesulfonic acid (Fisher) in deionized water and adding 1 equiv of KOH. Complete dissolution of the potassium salt was achieved by continued stirring and gentle heating. The resulting solution was frozen and water removed in vacuo.

Potassium p-ammoniobenzenesulfonate (9) and sodium p-(dimethylammonio)benzenesulfonate (14) were prepared by incremental acidification of aqueous solutions of 7 and 6 with a minimum amount of 12 M HCl, with subsequent ³³S chemical shift determinations. No further changes in the ³³S spectra were ob-

served when the pH values given in Table I were reached. The natural-abundance ³³S spectra were recorded unlocked at 23.008 MHz (7.047 T) on a Varian VXR-300 NMR spectrometer, operating in the Fourier transform mode, using a high-resolution, broad-band probe and 10-mm-o.d. sample tubes. The concentrations of the aqueous arenesulfonates were 0.046-0.13 M. In all cases, ³³S chemical shifts were referenced to 0.12 M aqueous ammonium sulfate contained in a coaxial 5-mm-o.d. NMR sample tube. Broad-band (square wave modulated) proton decoupling was employed throughout.

The ³³S spectral width was 10000 Hz, acquisition times were 0.147 s (2944 data points) for spectra recorded at 20 ± 1 °C and 0.198 s (3968 data points) for those recorded at 39 ± 1 °C, and FID's were transformed in 32K data points. In most cases, acquisition of transients was continued until a signal to noise ratio of at least 20 was attained. In order to minimize "base-line roll" resulting from acquisition of ultrasonic acoustic ringing in the probe, a receiver dead time (Varian VXR parameter ROF2) of 50 μ s was employed.¹⁴

For spectra recorded at 39 ± 1 °C, the probe temperature was calibrated by recording the ¹H NMR of degassed ethylene glycol (Aldrich, 99+% spectrophotometric grade) contained in a sealed 10-mm-o.d. NMR sample tube.¹⁵ The ¹H NMR spectra were recorded without field frequency lock, and the magnetic field was shimmed on the FID. All samples for spectra recorded at $39 \pm$ 1 °C were thermostated for at least 30 min prior to insertion into the probe, and the sample temperature was allowed to equilibrate with the probe for approximately 30 min prior to acquisition of transients.

Acknowledgment. We thank Loyola University of Chicago for a University Fellowship for D.C.F. and for the purchase of the Varian VXR-300 NMR. We also thank Prof. R. V. Hoffman for the generous donation of compounds 4, 5, 10, and p-nitrobenzenesulfonic acid.

Registry No. 1, 98-11-3; 2, 617-97-0; 3.2Na, 831-59-4; 4, 1643-69-2; 5, 98-47-5; 6·Na, 2244-40-8; 7·K, 29901-62-0; 8, 104-15-4; 9.K, 128328-00-7; 10, 138-36-3; 11, 98-66-8; 12.Na, 61827-67-6; 13.2K, 16056-13-6; 14.Na.HCl, 128358-01-0; 15.Na, 5134-88-3.

⁽¹²⁾ σ values taken from ref 11a, p 61.

⁽¹³⁾ Drushel, W. A.; Felty, A. R. Am. J. Sci. 1917, 43, 57.
(14) (a) Patt, S. L. J. Magn. Reson. 1982, 49, 161. (b) Fukushima, E.; Roeder, S. B. W. J. Magn. Reson. 1979, 33, 199. (c) Seiter, C. H. A.; Feigenson, G. W.; Chan, S. I.; Hsu, M.-C. J. Am. Chem. Soc. 1972, 94,

⁽¹⁵⁾ Varian VXR Program TEMCAL(E).